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Abstract

Finite element image reconstruction in microwave ablation treatment

by Konstantinos Katrioplas

Reliable imaging of biological tissues during microwave ablation is crucial to the
effect of cancer treatment. Real time evaluation of the ablated area is based upon
the change of the dialectrical properties of the surrounding tissue. In silico electrical
impedance tomography (EIT) is used to reconstruct images of a 26-year old realistic
human model during a 10-minute treatment at 2.45 GHz. In place of real volt-
age measurements, the electrostatic field is solved using the FEM. Gauss–Newton
reconstruction algorithm is implemented to obtain images via the open source nu-
merical suite EIDORS. Simulation results evidence the possibility of real-time im-
age reconstruction using EIT. Average electrical conductivity value of the tumor
area indicates an error of less than 5% of the assumed value at the end of the treat-
ment.
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1
Motivation

1.1 Mechanisms of tumour cell death

Modern imaging techniques have paved the way for minimally invasive thermal ab-
lation to be considered common practice in the quest for cancer treatment. Thermal
ablation of tumours is the local application of extreme temperatures to induce irre-
versible cell injury and ultimately tumour apoptosis and coagulative necrosis. Cur-
rent thermoablative technology offers several advantages over surgical resection:
most notably, lower morbidity, increased preservation of surrounding tissues, re-
duced cost and shorter hospitalization times as well as the ability to treat patients
who are poor surgical candidates. Although the efficacy and success rate vary sub-
stantially among different tumor types, the outcome relies on efficient monitoring
of the biological tissues during the treatment.

Current most commonly used thermal techniques (Chu and Dupuy, 2014) are
radiofrequency ablation (RFA) and microwave ablation (MWA), which are high-
temperature-based modalities, and cryoablation, which is a low-temperature-based
modality. Newer technologies, but less studied, include high-intensity focused ul-
trasound (HIFU) and laser ablation, which are conceptually similar to high-tempe-
rature-based ablation. HIFU is the only completely non-invasive hyperthermic
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modality. It uses multiple ultrasound beams and focuses them on a selected focal
area to generate temperatures of up to 60 °C using acoustic energy, which causes
coagulative necrosis. Laser ablation generates electromagnetic heating and can be
very precise and efficient. However because light is easily scattered and absorbed
this modality has limited tissue penetration and affects very small areas.

RFA and MWA, as well as laser ablation and HIFU, cause focal hyperthermic
injury to ablated cells, which affects the tumour microenvironment and damages
cells at the membrane and subcellular levels. Cellular damage depends on the ther-
mal energy that is applied, the rate of application and the thermal sensitivity of the
target tissue. Heat-ablated lesions can be thought of as having three zones (Ahmed
et al., 2011): the central zone, which is immediately beyond the application tip and
which undergoes ablation-induced coagulative necrosis; a peripheral or transitional
zone of sublethal hyperthermia, which mostly occurs from thermal conduction of
the central area that is either undergoing apoptosis or recovering from reversible
injury; and the surrounding tissue that is unaffected by ablation.

At temperatures of around 40–45 °C, irreversible cell damage occurs only after
prolonged exposure (from 30 to 60 minutes). At temperatures of above 60 °C, the
time that is required to achieve irreversible damage decreases exponentially. Inacti-
vation of vital enzymes is an initial feature of injury. Above 60 °C, rapid protein
denaturation occurs, which is immediately cytotoxic and leads to coagulative necro-
sis (Nikfarjam, Muralidharan, and Christophi, 2005).

1.1.1 Radiofrequency ablation

RF ablation relies on a complete electrical circuit created through the body to con-
duct RF current. RF current is able to pass through tissue because of the abundance
of ionic fluid present; however, tissue is not a perfect conductor and RF current
causes resistive heating. Direct RF heating occurs within several millimeters of the
electrode. The rest of the final ablation zone is created when thermal conduction
pushes heat into the peripheral zone around the electrode. RF current can be ap-
plied using “monopolar” or “bipolar” modes. In monopolar mode, a single inter-
stitial electrode (or group of electrodes) is used to deliver current at the tumor site,
while surface electrodes (ground pads) complete the electrical circuit through the
body. In bipolar mode, current flows between two interstitial electrodes.

In the central zone temperatures between 60 °C and 100 °C are generated by a
high-frequency alternating current, which induces frictional heating when the ions
in the tissue attempt to follow the changing directions of the alternating current.
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Figure 1.1: The applicator tip is surrounded by three zones. The cen-
tral zone undergoes coagulative necrosis at temperatures ≥ 50 °C.
The peripheral or transitional zone has a steep negative temperature-
gradient. At temperatures between 41 °C and 45 °C there is still heat-
induced injury, but it is sublethal and reversible. Metabolic functions
might be deranged or halted, and cells in this zone are vulnerable to
further injury; for example, radiation-induced inhibition of DNA re-
pair and cell recovery can eliminate already susceptible cells. (Chu

and Dupuy, 2014)
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This frictional heating (also known as ‘resistive’ heating) causes cell injury by the
above-stated hyperthermic mechanisms and subsequent coagulative necrosis. In-
terestingly, temperatures >100 °C are less effective, as the desiccation that results
at these temperatures, which manifests as water vapour and burnt tissue, increases
the tissue impedance and therefore limits further electrical conduction through the
remaining tissue.

Additionally, cytotoxic temperatures are difficult to maintain if the ablated tu-
mour is near large blood vessels. This heat-sink effect is a commonly described
limitation of RFA and occurs when heat that is absorbed by flowing blood or air is
carried away from the area of ablation, thereby dissipating the hyperthermia and de-
creasing RFA efficacy; because of this, tumour tissue that is adjacent to vasculature
is less susceptible to thermal damage (Chu and Dupuy, 2014).

1.1.2 Microwave ablation

During MW ablation an electromagnetic field, which is typically between 900–2500
MHz, is created through an intratumourally placed antenna. This field forces the
polar molecules with intrinsic dipoles — predominantly water — within the tis-
sue to continuously realign with the oscillating electric field (figure 1.2). This phe-
nomenon is known as dielectric hysteresis, or rotating dipoles (Lubner et al., 2010).
The rotation of the molecules increases their kinetic energy, thereby elevating he
temperature of the tissue. In contrast to RFA, MWA does not rely on electric cur-
rents and conduction through tissue, so temperatures>100 °C are usually adminis-
tered without the concern that desiccation will disrupt therapeutic delivery. MWA
is therefore more suitable for tissues with higher impedance, including lung and
bone, and for tissues with a high water content, such as solid organs and tumours.

MWA has several advantages over RFA. Firstly, since as a principle it does not
rely on conduction currents through the tissue but rather on polarization currents,
it is not affected by the evaporation of water molecules at very high temperatures,
and thus, the therapeutic delivery is not disrupted. Furthermore, it has the abil-
ity to achieve better heating of larger tumour volumes and a lower susceptibility to
heat-sink effects because microwave systems are faster and more efficient. During
RFA, the zone of active heating is limited to a few millimetres around the active
electrode, and the remainder of the treated tissue is heated by thermal conduction.
By contrast, MWA at certain frequencies can heat tissue up to 2 cm away from the
antenna. Another advantage of MWA is the ability to use multiple antennas to
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amplify the ablative effect, which enables larger or multi-focal tumours to be ab-
lated simultaneously. Phasing the electromagnetic waves constructively, the heat
generated is proportional to the square of the number of antennas; therefore simul-
taneous activation of multiple antennas results in a synergistic (rather than additive)
increase in lesion size (Wright, Lee, and Mahvi, 2003).

However, MWA systems are more cumbersome than RFA and use larger cables.
In addition, the antenna is prone to overheating, which necessitates a cooling mech-
anism to protect the superficial structures along the antenna (Lubner et al., 2010).

1.1.3 Dielectric properties during MWA treatment

The interaction of the EM field radiated by the interstitial antenna with the sur-
rounding tissue is determined by the tissue’s dielectric properties. However, heating
influences the dielectric properties of the tissue under treatment causing irreversible
structural changes principally related to tissue dehydration when temperature rises
over about 60 °C. In particular, in a temperature range of 60–80 °C protein denat-
uration occurs, whereas water vaporization starts as temperature approaches 100
°C.

Information on the dielectric properties of the target tissue plays an important
role in determining the radiation efficiency and the specific absorption rate (SAR,
W /k g−1 ) pattern of a MW ablation antenna. In (Lopresto et al., 2012), the authors
performed an experimental characterization of the ex vivo dielectric properties of
adult bovine liver at 2.45 GHz (a typical frequency for several devices used in MW
thermal therapy) during a MTA treatment.

In general, relative permittivity can be expressed as

ε∗r = εr − i
σ

ωε0

(1.1)

where ε0 is the vacuum permittivity (ε0 ≈ 8.85× 10F /m), ω = 2π f , with f rep-
resenting the frequency (2.45GH z), εr is the real relative permittivity (dialectric
constant) and σ(S/m) is the electric conductivity. Electrical permittivity and elec-
trical conductivity were characterized as a function of temperature up to 95 °C
(figure 1.4).

The measurements indicate a decrease of both permittivity and conductivity in
liver tissue during the ablation as the temperature increases over 60 °C. Once the
temperature rises over 90 °C, both drop dramatically and continue to decrease with
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Figure 1.2: Alternating electromagnetic field causes polar molecules
to continuous realign, producing kinetic energy and in turn, heat.

(Brace, 2009)

Figure 1.3: Since significant shaft heating that can occur with mi-
crowaves, a robust shaft cooling mechanism is required to minimize
thermal damage to the subcutaneous tissues and the skin, especially
with the development of higher power systems. (Lubner et al., 2010)
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(a)

(b)

Figure 1.4: Relative permittivity and electric conductivity as a func-
tion of the temperature, measured at 2.45GH z in ex vivo bovine liver
during the MTA treatment (30W for 10 min) (Lopresto et al., 2012)
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exposure time. After switching off the MW field, the values of the dielectric prop-
erties remain significantly lower (about 38% for the relative permittivity, and about
33% for the electric conductivity) than the initial ones, evidencing that the mea-
sured changes are irreversible.

1.1.4 Regression modeling for dielectric properties in MWA

In (Ji and Brace, 2011) ex vivo measurements of dielectric properties during mi-
crowave ablation were taken for temperatures that exceeded 100 °C. Furthermore,
several regression models for both permittivity and conductivity were investigated.
Their results are presented in figure 1.5.

Figure 1.5: Experimental results (dots) of relative permittivity and
conductivity versus temperature during microwave ablation. Also
shown are the best-fit sigmoidal curves (solid lines), along with the

upper and lower envelops (dashed lines). (Ji and Brace, 2011)

The sigmoidal model which best fitted the behavior of both relative permittivity
and conductivity was

εr (T ) = a3{1−
1

1+ ea1(a2−T )
}+ 1 (1.2)

σ(T ) = a3{1−
1

1+ ea1(a2−T )
}+ 1 (1.3)
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where temperature T is the lone independent variable (°C) and ai (i = 1,2,3) are
the regression coefficients presented in table 1.1.

a1 a2 a3 a4
εr 0.0764 82.271 48.391 0.857
σ 0.0697 85.375 2.173 0.7881

Table 1.1: Regression coefficients for models 1.2 and 1.3 (Ji and Brace, 2011).

Only the sigmoidal model predicted the rapid increase in microwave heating
when temperatures exceeded 100 °C. However, in contrast to the rapid temperature
elevations indicative of direct microwave heating near the antenna, temperatures
increased more slowly and linearly farther from the antenna.

1.2 Imaging techniques

To improve the success rate without any adverse effects and reduce recurrence rate
after ablation treatments, the therapy requires a non-invasive real-time temperature
distribution monitoring method in the treated region during the ablation (Irina,
Kirill, and Rinat, 2005). Additionally, the evaluation of the ablated lesion is one
of the most important topics related to predicting local recurrence after ablation.
For these reasons, often impedance feedback or internal probe temperature is used.
However, thermal conduction is affected by dynamic tissue characteristics and the
structure of surrounding tissues, such as the vascularity close to the ablated region
and its blood flow. Therefore, it is optimal to provide detailed dynamic information
to feedback control algorithms. Real-time temperature mapping may assist control
of the ablation outcome to protect against coagulation necrosis, over-heating, and
associated effects in surrounding tissue.

Well established imaging techniques including ultrasound, Computed Tomog-
raphy (CT), and Magnetic Resonance Imaging (MRI) have been used for planning,
targeting, monitoring, controlling, and assessing treatment response during abla-
tion procedures. MRI using the proton resonance frequency technique can provide
highly sensitive temperature distribution information in vivo with high spatial res-
olution. However, it is difficult to assess ablation outcome in real-time and requires
Magnetic Resonance (MR) compatible ablation methods. High intensity focused
ultrasound ablation is of interest since ultrasound could be a combined method for
treatment and monitoring. However, it requires a skilled operator to treat local-
ized cancer with well-demarcated margins and prior information related to tissue
distribution.
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Electrical conductivity of a biological tissue reflects ion mobility in intra- and
extra-cellular fluids corresponding to temperature, composition of moving ions,
cellular morphology of tissue, and other factors. During the last three decades,
there have been numerous studies to visualize the conductivity distribution inside
the human body (Wi et al., 2015).

1.2.1 Electrical Impedance Tomography

Figure 1.6: Distribution of isopotential lines. (Teschner, Imhoff, and
Leonhardt, 2011)

Electrical impedance tomography (EIT) is a technique to provide cross-sectional
conductivity images from boundary measurements of voltages subject to externally
injected currents (Webster, 1990; Holder, 2005). It has been applied in a number of
areas with highest adoption in lung ventilation monitoring due to its high tempo-
ral resolution and suitability for bedside monitoring. Typically, conducting surface
electrodes are attached to the skin around the body part being examined. Small
alternating currents will be applied to some or all of the electrodes, the resulting
equi-potentials being recorded from the other electrodes (figures 1.6 1.8). This pro-
cess will then be repeated for numerous different electrode configurations and fi-
nally result in a two-dimensional tomogram according to the image reconstruction
algorithms incorporated (figure 1.7).

Mathematically, the problem of recovering conductivity from surface measure-
ments of current and potential is a non-linear inverse problem and is severely ill-
posed. The mathematical formulation of the problem is due to Alberto Calderón,
and in the mathematical literature of inverse problems it is often referred to as
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"Calderón’s inverse problem". There is extensive mathematical research on the
problem of uniqueness of solution and numerical algorithms for solving it.

Conductivity spectrum can be used as a biomarker to differentiate cancerous tis-
sue from normal because tissue associated with malignant lesions displays a large
change in conductivity spectrum caused by differences in cell density, size, and vas-
cularization. Tissue changes occur in ablated tissue and, hence, conductivity imag-
ing has been proposed as a method to monitor temperature distribution and assess
the ablated lesion due to ablation (Wi et al., 2015).

Figure 1.7: Resulting image after successive superposition of all volt-
age deviations. (Teschner, Imhoff, and Leonhardt, 2011)
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Figure 1.8: Voltage deviations in the presence of a regional increase
of impedance. (Teschner, Imhoff, and Leonhardt, 2011)



2
The finite element method

2.1 The static electrical field

The diffusion of the potential in a static electrical field can be calculated by solving
the Laplace equation:

∇2u = 0 (2.1)

In a general case where particles, energy, or other physical quantities are trans-
fered inside a physical system due to diffusion and convection the convection-diffusion
equation has to be considered:

∂ u
∂ t
=∇ ·σ∇u − v∇u + f (2.2)

where σ is the diffusivity in the medium, v is the average velocity that the quan-
tity is moving with (convection) and f describes the source of the quantity. Should
the convection term and the source be absent, the equation truncates to the famous
Laplace equation.
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The Laplace equation is the simplest elliptic partial differential equation and the
finite element method is an excellent way to solve it numerically. A solution u
satisfying 2.1 will also satisfy boundary conditions on the boundary ∂ Ω of Ω:

u = gD on ∂ ΩD (2.3)

∂ u
∂ n
= gN on ∂ ΩN (2.4)

where ∂ u
∂ n denotes the directional derivative in the direction normal to the bound-

ary (conventionally pointing outwards). On the ∂ ΩD the boundary condition is of
Dirichlet type, whereas on the ∂ ΩN we have Neumann boundary condition.

2.1.1 Weak formulation

A sufficiently smooth function u satisfying 2.1 and both 2.3 and 2.4 conditions
is known as a classical solution to the boundary value problem. For a Dirichlet
problem, u is a classical solution only if it has continuous second derivatives in Ω
and is continuous up to the boundary. Since we demand the solution in any non-
smooth domain an alternative description of the boundary problem is required.
Since this alternative description is less restrictive it is called a weak formulation.

To derive a weak formulation of a Laplace problem we require that for an appro-
priate set of test functions υ

∫

Ω

(∇2u) υ= 0 (2.5)

This formulation exists provided that the integrals are well defined. If u is a clas-
sical solution then it must also satisfy 2.5. If υ is sufficiently smooth however, then
the smoothness required of u can be reduced by using the derivative of a product
rule and the divergence theorem

∫

∇ · (υ∇u) =
∫

∇υ · ∇u +
∫

υ∇2u

−
∫

υ∇2u =
∫

∇υ · ∇u −
∫

∂ Ω

υ
∂ u
∂ n
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so that
∫

∇υ · ∇u =
∫

∂ Ω

υ
∂ u
∂ n

(2.6)

In case of Dirichlet conditions, the value of the solution is exactly known, u =
gD , and hence test functions are not defined on the boundary, υ = 0. This is in
contrast to the Neumann case where the solution and the test functions are not
restricted on the boundary. Taking 2.4 into account, 2.6 becomes

∫

∇υ · ∇u =
∫

∂ ΩN

υgN for all suitable υ (2.7)

All suitable υ functions are those whose derivative is square-integrable (Elman,
Silvester, and Wathen, 2005). In contrast, a classical solution of a Laplace problem
has to be twice differentiable inΩ, which is a much more stringent requirement than
the square integrability of first derivatives. Using 2.7 instead as the starting point
enables us to look for approximate solutions that only need satisfy the smoothness
requirement and the essential boundary conditions.

2.1.2 The Galerkin approximation

We construct an approximation method by assuming for the solution of the 2.7 a
finite n-dimensional vector space of test functions for which {φ1,φ2, . . . ,φn} is a
convenient basis. In that sense, the finite element approximation for the solution
uh is uniquely associated with the vector u= (u1,u2, · · · ,un)

T of real coefficients in
the expansion

uh =
n
∑

j=1

= u jφ j (2.8)

The functions φi , i = 1, · · · , n in 2.8 define a set of trial functions. In the fi-
nite element context they are called shape functions. The Galerkin approximation
(or more precisely Bubnov-Galerkin, contrary to the Petrof-Galerkin), indicates that
the choice of the trial functions coincides with the test functionsφ≡ υ (Elman, Sil-
vester, and Wathen, 2005).

The result of the Galerkin approximation is a finite-dimensional version of the
weak formulation:
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∫

Ω

∇uh · ∇υh =
∫

∂ ΩN

υh gN for all υh (2.9)

Substituting 2.8 into 2.9 yields

n
∑

j=1

u j

∫

Ω

∇φ j · ∇φi =
∫

∂ ΩN

φi gN (2.10)

for i = 1, · · · , n. This can be written in matrix form as a linear system of equa-
tions

Au= b (2.11)

with
A= [ai j ], ai j =

∫

Ω

∇φ j · ∇φi (2.12)

and
b = [bi], bi =

∫

∂ ΩN

φi gN (2.13)

The matrix A is referred to as the stiffness matrix. The stiffness matrix (2.12) is
symmetric and is also positive-definite (Elman, Silvester, and Wathen, 2005), and
thus, its linear system can be solved with fast iterative methods.

2.2 Implementation

The first step over implementing the finite element method is to generate a mesh of
elements consisting of tetrahedra over the three dimensional physical domain, or
triangles in a two dimensional plane. A very efficient algorithm to perform such a
procedure is the Delaunay triangulation and is implemented in the CGAL library
(The CGAL Project, 2016). After obtaining a tetrahedral mesh, the construction
of the Galerkin system follows. Essential conditions are imposed after the assemby
of the element contributions into the Galerkin system has been completed. Finally,
we obtain the solution of the discrete system using a linear solver that exploits the
sparsity of the coefficient matrix.
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2.2.1 Shape functions

The points where triangle vertices meet are called nodes. For each node, we define
φ j to be a linear function (i.e. of the form a + b x + cy + d z) on each tetrahedral
element satisfying the interpolation condition

φ(node i) =







1 when i = j

0 when i 6= j
(2.14)

There are precisely four basis functions that are nonzero on any particular tetra-
hedral element, corresponding to the four coefficients needed to define the linear
approximation in the element. Higher order tetrahedral elements can be defined by
introducing additional nodes.

Figure 2.1: Linear shape function of node (1) and linear approxima-
tion of solution

Figure 2.2: Quadratic shape functions

The key idea in the implementation of finite element methodology is to con-
sider everything "elementwise", that is, locally one element at a time. The stiffness
matrix from 2.10 can be written as
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n
∑

j=1

u j

∫

Ω

∇φ j · ∇φi =
n
∑

j=1

u j

(

∑

4k

∫

4k

∇φ j · ∇φi

)

(2.15)

where 4k is an element of the triangulation. When forming the sum over the
elements in 2.15 we need only to take account of those elements where the basis
functions φi and φ j are both nonzero. This means that entries ai j and bi in the
Galerkin system can be computed by calculating contributions from each elements,
and then gathering them together (assembly).

For an element k with nk degrees of freedom, there are exactly nk shape func-
tions. As such, the solution within the elements takes the form

uh |k =
nk
∑

i=1

u(k)i ψk ,i (2.16)

assuming that
¦

ψk ,1,ψk ,2, · · · ,ψk ,nk

©

(2.17)

are the local shape functions. Thus, for each element we need to compute nk×nk

matrices Ak and nk sized vectors bk such that

ai j =
∫

4k

∇ψk ,i · ∇ψk , j (2.18)

bi =
∫

∂ Ω

ψi gN (2.19)

The matrix Ak is referred to as the element stiffness matrix associated with element
4k

2.2.2 Jacobian transformation

The first stage in the computation of the element stiffness matrix Ak s to map from
a reference element4∗ onto the given element4k , as illustrated in figure 2.3. The
mapping is defined for all points (x, y) ∈4k and for a triangle element is given by
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x(ξ ,η) = x1N1(ξ ,η)+ x2N2(ξ ,η)+ x3N3(ξ ,η) (2.20)

y(ξ ,η) = y1N1(ξ ,η)+ y2N2(ξ ,η)+ y3N3(ξ ,η) (2.21)

where

N1(ξ ,η) = 1− ξ −η

N2(ξ ,η) = ξ (2.22)

N3(ξ ,η) = η

Figure 2.3: Isoparametric mapping of reference element

are the shape functions defined on the reference element. Clearly the map from
the reference element onto4k is differentiable, thus, for a function φ(ξ ,η) we can
transform derivatives via the Jacobian matrix





∂ φ
∂ ξ

∂ φ
∂ η



=





∂ x
∂ ξ

∂ y
∂ ξ

∂ x
∂ η

∂ y
∂ η









∂ φ
∂ x

∂ φ
∂ y



 (2.23)

The fact that |Jk(ξ ,η)| 6= 0 for all points (ξ ,η) ∈4∗ is very important; it ensures
that the inverse mapping from 4k onto the reference element is uniquely defined
and is differentiable. As such, the derivative transformation for a triangle can be
inverted to produce
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



∂ φ
∂ x

∂ φ
∂ y



=





∂ ξ
∂ x

∂ η
∂ x

∂ ξ
∂ y

∂ η
∂ y









∂ φ
∂ ξ

∂ φ
∂ η



 (2.24)

Using 2.24 we can compute the derivatives of the shape functions of the reference
element with respect to the axis of the k element and plug them in to easily compute
each element of the local stiffness matrix:

a(k)i j =
∫

4k

∂ ψk ,i

∂ x

∂ ψk , j

∂ x
+
∂ ψk ,i

∂ y

∂ ψk ,i

∂ y
dxdy i , j = 1, · · · , nk (2.25)

=
∫

4∗

¨

∂ ψ∗,i
∂ ξ

∂ ψ∗, j

∂ ξ
+
∂ ψ∗,i
∂ η

∂ ψ∗,i
∂ η

«

| Jk | dξ dη (2.26)

The last step to calculating the stiffness functions is to compute the integrals. We
use the multi-dimensional Gauss quadrature for this. The integral is approximated
by the summation

a(k)i j =
m
∑

s=1

m
∑

t=1

ws t | Jk(ξs ,ηt ) |
¨

∂ ψ∗,i
∂ ξ

∂ ψ∗, j

∂ ξ
+
∂ ψ∗,i
∂ η

∂ ψ∗,i
∂ η

«

�

�

�

ξs ,ηt

(2.27)

where the quadrature points (ξs ,ηt ) correspond to the associated weights ws t for
each integration rule (Hughes, 1987).

Figure 2.4: Gauss quadrature rule on the reference element

2.2.3 Assembly

The assembly process is implemented by calculating the stiffness matrix for every
element. Then the contribution of each element to the corresponding node is added
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to the global matrix of coefficients.

Figure 2.5: Assembly of shape functions around each node.

The main computational issue is the need for careful bookkeeping to ensure that
the element contributions are added into the correct locations in the coefficient
matrix A and the vector b . The simplest way of implementing the process is to
represent the mapping between local and global entities using a connectivity matrix.
This process is illustrated in figures 2.6 and 2.7.

Figure 2.6: Local and global numbering for a triangular mesh.

Figure 2.7: Connectivity matrix of global indices to local element
nodes

As a last important step after the assembly has been completed, boundary con-
ditions must be imposed. Dirichlet boundary conditions are imposed after the as-
sembly and Neumann boundary conditions are imposed last, after the Dirichlet
conditions. There are several approaches to imposing the Dirichlet conditions but
the one used for this study was to modify the row and column of the Galerkin ma-
trix corresponding to the boundary node so that the diagonal vale is unity and the
off-diagonal entries are set to zero. Furthermore, the corresponding value of the
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b vector is set to the boundary value. For the Neumann conditions, they are im-
posed by running through the boundary edges and evaluating edge contributions
using one-dimensional Gauss quadrature.

2.3 Solution of discrete system

The coefficient matrix of the linear system arising from finite element discretiza-
tion of the Poisson equation is symmetric positive-definite. Following the Galerkin
approximation discussed in this chapter, is also sparse. That is, only a very small
proportion of its entries is nonzero. For this study a Krylov subspace method was ap-
plied to produce the solution for the static field, and in particular the conjugate gra-
dient method with Jacobi preconditioner. Open source numerical library PetSc
was used (Balay et al., 2016).

For the iterative solution of the linear system it would be ideal if the number
of iterations required to satisfy the stopping criterion did not grow under mesh re-
finement, so that the computational work would grow linearly with the dimension
of the discrete system. Preconditioning is usually employed in order to achieve this
ideal or to get closer to it. The basic idea is to construct a matrix (or a linear pro-
cess), P say, that approximates the coefficient matrix A but for which it requires
little work to apply the action of the inverse of P , that is, to compute P−1v for
given v. One may then think of solving

P−1Au= P−1b (2.28)

instead of Au= b ; they clearly have the same solution. If P is a good approximation
of A, then it might be expected that the conjugate gradient iteration will be more
rapidly convergent for the preconditioned system 2.28 than for the original system
and the overall computational work may be significantly reduced. For very large
problems, preconditioning may be necessary to make computation feasible.

The Jacobi preconditioner is one of the simplest forms of preconditioning, in
which the preconditioner is chosen to be the diagonal of the matrix

P = d ia g (A) (2.29)
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Assuming Ai i 6= 0,∀i , we get

P−1
i j =

δi j

Ai j

(2.30)

2.4 Validation

The self-implemented electrostatic numerical solver was validated in two ways. First,
it was validated against EIDORS’ (Polydorides and Lionheart, 2002; Adler and Li-
onheart, 2006; Polydorides, 2002) forward solver on a homogeneous cylinder. The
result is shown in figure 2.8.

(a) Eidors numerical solution

(b) Finite element solver numerical solution

Figure 2.8: Finite element solver validation against Eidors’ forward
solver.
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Furthermore, it was compared to some analytical solutions. Simple geometries
were designed out of which the analytical solution is obvious and can be calculated
easily. Two cases are presented here, a cube and a two spheres in figures 2.9 and 2.10

Figure 2.9: Boundary conditions were set at -1 at the left face and +1
at the right face of the cube. Exactly zero is expected in the middle.
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(a) Two homogeneous spheres barely touching.

(b) Plot of the potential (with purple) along a line passing through the
middle from the very left to the very right. The potential is exactly zero
in the middle, as experted. With red color is the initial values of the po-

tential along the same line.

Figure 2.10: Boundary values were set -1 at a few points at the very
left of the sphere in the left part of the image, and +1 at the very
right part of the right sphere. Potential is diffused through the thin

part where they barely touch.





3
Image Reconstruction

3.1 Inverse problem in EIT

The process of estimating the impedance from the measured data is known as the
inverse problem in EIT. The inverse problem is solved using a reconstruction al-
gorithm of which there are two primary types in EIT. Static imaging attempts to
recover an estimate of the absolute conductivity of the medium from which the
boundary data was acquired. Static imaging is discussed in section 3.3. Difference
imaging attempts to recover an estimate of the change in conductivity over some in-
terval based on data frames measured at two times, see figure 2.3. Difference images
can be calculated in a single step with a linearized algorithm, however this assumes
that the impedance change over the interval is small. For large impedance changes
one needs to solve the non-linear problem with an iterative algorithm.

Calculation of the impedance or impedance changes based on the boundary volt-
age data is an instance of an ill-conditioned, inverse problem. Such problems are un-
stable and require some method of improving the conditioning to achieve stability.
The most common method is regularization, which involves trading off fidelity to
the data against adherence to some a priori condition on the solution.
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(a) σ at t1 (b) σ at t2 (c) Conductivity change

Figure 3.1: Example of difference imaging reconstruction (Graham,
2007)

3.2 Reconstruction algorithm

3.2.1 General statement of the problem

The objective of an inverse problem is to find the best model m such that

d =Gm (3.1)

where G is an operator describing the explicit relationship between the observed
data, d , and the model parameters. In the most general context, G represents the
governing equations that relate the model parameters to the observed data (i.e., the
governing physics). In the case of a discrete linear inverse problem d and m are vec-
tors, and G is a matrix, often called the observation matrix. In the context of EIT,
the observed data correspond to the electric potential and the model parameters
consist the electrical conductivity of the biological tissues.

To solve for the model parameters that fit our data we need to invert the matrix
G, so that

m =G−1d (3.2)

However, matrix G is almost never invertible, since it depends on both the inde-
pendent variable and the parameters.

3.2.2 Non-linear least squares

Because we cannot directly invert the observation matrix, we use methods from
non-linear regression analysis. The basis of the method is to approximate the model
by a linear one and to refine the parameters by successive iterations.
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Considering a set of m data points, (x1, y1), (x2, y2), . . . , (xm, ym) and a model
function f (x,β) that in addition to the variable x also depends on n parameters
β= (β1,β2, . . . ,βn), with m ≥ n, it is desired to find vector β of parameters such
that the model fits best the data, in the least squares sense. That is, the sum of
squares

S =
m
∑

i=1

r 2
i (3.3)

is minimized, where residuals ri are given by

ri = yi − f (xi ,β) (3.4)

for i = 1,2, . . . , m.

The minimum value of S occurs when its gradient is zero. Since the model con-
tains n parameters there are n gradient equations:

∂ S
∂ β j

= 2
∑

i

ri
∂ ri

∂ β j

= 0 ( j = 1, . . . , n) (3.5)

In an nonlinear system, the derivatives ∂ ri
∂ β j

are functions of both the indepen-
dent variable and the parameters, so these gradient equations do not have a closed
solution. Instead, initial values must be chosen for the parameters. Then, the pa-
rameters are refined iteratively, that is, the values are obtained by successive approx-
imation,

βk+1
j =βk

j +∆β j (3.6)

where k is an iteration number and the vector of increments, ∆β is known as the
shift vector. At each iteration the model is linearized by approximation to a first-
order Taylor series expansion about βk

f (xi ,β)≈ f (xi ,β
k)+

∑

i

∂ f (xi ,β
k)

∂ β j

(β j −β
k
j ) = f (xi ,β

k)+
∑

j

Ji j∆β j (3.7)
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The Jacobian, J, is a function of constants, the independent variable and the param-
eters, so it changes from one iteration to the next. Thus, in terms of the linearized
model we calculate the residuals and their derivatives

∂ ri

∂ β j

=−Ji j (3.8)

ri = yi − f (x,β) =
�

yi − f (x,β
k)
�

+
�

f (x,β
k)− f (x,β)

�

=∆yi −
n
∑

s=1

Ji s∆βs (3.9)

and by substituting 3.8 and 3.9 into 3.5 we get

−2
m
∑

i=1

Ji j

�

∆yi −
n
∑

s=1

Ji s∆βs

�

= 0

m
∑

i=1

n
∑

s=1

Ji j Ji s∆βs =
m
∑

i=1

Ji j∆yi ( j = 1, . . . , n)

or written in matrix notation

(JTJ)∆β= JT∆y

∆β= (JTJ)−1JT∆y (3.10)

The matrix (J T J )−1J T is the so called Moore–Penrose pseudoinverse matrix of J .

3.2.3 Gauss–Newton algorithm

The Gauss–Newton algorithm is a modification of Newton’s method for finding a
minimum of a function. The algorithm iteratively finds the value of the variables
which minimizes the sum of squares in 3.3. Starting with an initial guess β(0) for
the minimum, the algorithm proceeds with the iterations

β(k+1) =β(k)− (J T J )−1J T r (β(k)) (3.11)

where the Jacobian matrix is
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Ji j =
∂ ri (β

(k))
∂ β j

(3.12)

3.2.4 Tikhonov regularization

A regularization method is defined as an inversion method depending on a single
real parameter λ≥ 0, which yields a family of approximate solutions. Discrete reg-
ularization techniques include truncated singular value decomposition, maximum
entropy, and a number of generalized least squares schemes including Twomey and
Tikhonov regularization methods. All of these methods attempt to reduce the ef-
fects of solving an ill-conditioned system by restoring continuity of the solution on
the data (Andler and Guardo, 1996).

The most widely referenced regularization method is the Tikhonov method.
With Tikhonov regularization additional information about the solution, com-
monly referred to as prior information, is incorporated into the solution as an addi-
tional term in the least squares minimization. In this way, rather than minimizing
(y− Jβ)2 we minimize the expression

mi n{(y− Jβ)2+λ2(Rβ)2} (3.13)

Here R is a regularization matrix that is often diagonal or banded diagonal and
the expression λ2(Rx)2 represents some prior information about the conductivity.
This is a quadratic minimization that is guaranteed to have a unique solution for
λ > 0. The most often used regularization matrices in EIT are the identity matrix
and the classic Tikhonov regularization refers to the case where R= I. The implied
prior assumptions when the classic Tikhonov regularization is used are that x is
either small or slowly changing.

The Gauss–Newton method when the Tikhonov regularization is applied be-
comes

β(k+1) =β(k)− (J T J +λ2R)−1J T r (β(k)) (3.14)

The parameter λ is called the “regularization parameter” or “hyperparameter”
and controls the trade-off between solution stability and nearness of the regularized
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solutionβ to the un-regularized solution β̂. This can be understood as the approx-
imation error in the absence of measurement noise and the discretization noise due
to finite precision arithmetic.

The use of Tikhonov style regularization techniques is equivalent to introducing
a priori information to the reconstruction process. The fundamental prior infor-
mation of the conductivity solution is that it is a positive function. Such methods
provide stability but force solutions to be smooth in some sense thus eliminating
the possibility of non-smooth solutions.

3.2.5 Noser regularization

The NOSER regularization (Cheney et al., 1990) is proven to produce better re-
sults than the Tinhorov regularization for 3D problems where the ill-conditioning
is more apparent. Instead of using the identity matrix for the regularization matrix,
we use

R= d ia g (J T J ) (3.15)

thus, the NOSER regularized Gauss–Newton method becomes

β(k+1) =β(k)− (J T J +λ2d ia g (J T J ))−1J T r (β(k)) (3.16)

3.2.6 Application in 3D EIT

To apply the Gauss-Newton reconstruction algorithm in difference imaging we de-
fine x̂ = ∆σ = σ2 − σ1 the change in a finite element conductivity distribution
due to a change in difference signal, z = v2− v1 , over a time interval (t1, t2). σ1 is
the background known value of the conductivity. In this sense, the reconstruction
method in 3D is written as

x̂ = (H T H +λ2d ia g (H T H ))−1H T z (3.17)

where H = ∂ zi
∂ x j
|σ1

is the Jacobian.



4
Results

In this chapter we present the results of an in silico implementation of multiple im-
age reconstructions during microwave ablation treatment using electrical impedance
tomography. In place of real measurements that are taken during an actual EIT
procedure, we assume decrease of dielectric properties as described in sections 1.1.3
and 1.1.4, and solve the static electrical field to acquire in silico measurements of
the electric potential. Microwave frequency of 2.45 GHz was assumed.

The finite element method was used as described in chapter 2 to solve the Laplace
equation for each pair of electrodes. Open source numerical package EIDORS
(Polydorides and Lionheart, 2002; Adler and Lionheart, 2006; Polydorides, 2002)
was used to implement image reconstruction following the methods described in
chapter 3.

A realistic human model that was based on magnetic resonance imaging was
used. A tumor-target inside the human liver and the surrounding electrodes were
designed to fit the model simulating a real EIT procedure. Discussion of the results
and suggestions for future work follow in the next chapter.
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4.1 Human models

4.1.1 Virtual population

The Virtual Population (ViP) models are a set of detailed high-resolution anatomical
models created from magnetic resonance image data of volunteers (Gosselin et al.,
2014). The images used in this study were acquired with a resolution of 1 mm×
1 mm× 1 mm and consist of 77 different tissues for the adult models.

Figure 4.1: Virtual population models acquired with magnetic reso-
nance imaging. (Gosselin et al., 2014)

Out of all adult models, Ella was chosen for this part of simulations. Ella is a 26
year old woman and was preferred to 34 year old Duke considering computational
parameters such as memory allocated when attempting to reconstruct multiple im-
ages. Ella’s body is smaller than Duke’s.

4.1.2 Mesh

Tetrahedral finite element mesh out of the human model were calculated using pri-
marily the CGAL C++ numerical library via the iso2mesh matlab/octave wrapper.
A section of the body that contains the liver was extracted, as shown in figures 4.2
and 4.3.

The resulting mesh out of the part of the body that contains the liver is shown
in figure 4.4. It consists of 227722 tetrahedra and 44438 points between them. This
is a relatively modest mesh occupying only 13 MB of memory.
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(a) view from top, front (b) view from under the liver

Figure 4.2: Image segmentation of liver section. 28 different tissues
are included in this section.

(a) (b)

Figure 4.3: Human liver model as imaged by the magnetic resonance
topographer.

4.2 Model design

4.2.1 Electrodes placement

Electrodes were assumed points without size. In order to fit a number of electrodes
onto the surface points of the realistic human model, we came up with the following
algorithm

1. Extract all points of the cells on the outer surface

2. Find belt of points at height z0± tolerance

3. Calculate center of mass coordinates

4. From the points in the belt find point with maximum distance from

the center

5. Define circle using the center of mass and the maximum distance

found from the center

6. Define a number of points linearly on the circle equal to the desired

number of electrodes
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(a) Model tessellation. Mesh is finer near the domain bound-
aries.

(b) Tessellation comprising of only two different domains, one
of them is the liver.

Figure 4.4: Model tessellation created with the Delaunay algorithm.

7. For each point on the circle, find the point on the belt with the

minimum distance. Attach an electrode to this point on the model.

Numerical library VTK was used for the extraction of the surface points and the
calculation of the center of the mass. The algorithm was implemented in Python.
A simplified process is illustrated in figure 4.6.

4.2.2 Target area properties

The tumor which acts as the target of the therapy process was placed at the top
part of the liver. It was designed as a spherical domain with electrical conductivity
that is different from the background conductivity of the liver tissue. The coor-
dinates of its center are (111,60,95) mm. Its radius is 5, so that it is well placed
inside the liver. The entire model dimensions are x-range (8.41 to 197)mm, y-range
(3.49 to 290);mm, z-range (0 to 115);mm. The origin of the computational domain
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Figure 4.5: Create starting points in circle around realistic human
model.
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Figure 4.6: Model points with minimum distance from the starting
points are selected for electrodes to be placed.
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is at the bottom left. Images of the model before the application of the electrical
impedance tomography are shown in figure 4.7.

4.3 Reconstruction results

4.3.1 Forward solution

By solving the forward problem we mean solving the Laplace equation for the static
electrical field generated during the electrical impedance tomography. For 16 elec-
trodes, the equation is solved 8 times, since the stimulation is generated from two
different electrodes each time, as described in chapter 1. EIDORS offers several
different stimulation patterns; here we used an adjacent pattern generated between
nearby electrodes. The current amplitude of the stimulating electrodes was set at
10 mA and the contact impedance of each electrode at 10−3 O h m.

The solution of the forward problem when the stimulation is generated from
the first pair of electrodes is shown in figure 4.8. The tumor can be imaged when
subtracting the inhomogeneous solutions from the homogeneous.

4.3.2 2D reconstruction

A two-dimensional test is presented in figure 4.9. The conductivity of the homoge-
neous background was set to 1 S/m, while the conductivity of the target was set at
1.1 S/m. The noser regularization scheme was used, along with a hyperparameter
of 0.02. The absolute value of the reconstructed conductivity depends highly on
the value of the hyperparameter. Generally, precision increases with low hyperpa-
rameter, but a very small value of the hyperparameter may results in overfitting.

σe x pec t ed σr econs t r uc t ed error %
1.10 1.07 2.64

Table 4.1: Mean expected and reconstructed conductivity value.
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(a)

(b)

Figure 4.7: Tumor created in the top part of the liver. 16 electrodes
are placed at almost equal distances around.
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(a) Homogeneous model

(b) Inhomogeneous model

(c) Difference between inhomogeneous and homogeneous solutions

Figure 4.8: Electrical potential distribution calculated by solving the
Laplace equation.
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(a) Expected conductivity image
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(b) Reconstructed conductivity image

Figure 4.9: Reconstruction of conductivity image in a two-
dimensional model.
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4.3.3 Single instance reconstruction

As a preliminary single instance evaluation, a simplified case was designed. The
conductivity of the homogeneous background was set to 1 S/m. For the inhomo-
geneous case, the target area was assumed to be more conductive, thus the conduc-
tivity of the spherical tumor was set to be 0.1 S/m on top of the background. The
resulting reconstruction of the image when applying difference imaging is shown in
figure 4.10. The method is implemented by applying the Gauss-Newton algorithm
for one step to find the difference in the conductivity,∆σ . For the inhomogeneous
case, all tissues were considered to have the same background conductivity apart
from the target area.

For the reconstruction algorithm the hyperparameter for the regularization was
set at 10−4. Several different regularization schemes were tested. Noser regular-
ization, as described in chapter 3, was preferred due to its performance on three-
dimensional grids.

4.3.4 Multiple reconstruction during ablation

To simulate the around 10 min application of the ablation treatment, we used exper-
imental values for the conductivity as presented in section 1.1.3 to solve the forward
problem and subsequently reconstruct the image for every minute of the treatment.
The used values for the conductivity of the under ablation target area, which were
measured during microwave ablation on bovine liver, are shown in table 4.2 along
with the values for the conductivity from the resulted reconstructed images.

Time (min) σe x pec t ed σr econs t r uc t ed error %
0 1.79 1.79 0
1 1.71 1.72 0.74
2 1.66 1.68 1.20
3 1.63 1.65 1.48
4 1.59 1.62 1.86
5 1.55 1.58 2.23
6 1.43 1.48 3.36
7 1.38 1.43 3.83
8 1.34 1.40 4.20
9 1.30 1.36 4.57
10 1.26 1.32 4.94

Table 4.2: Mean expected and reconstructed values for tumor conductivity.
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(a)

(b)

Figure 4.10: Image reconstruction of model with conductive tumor
tissue
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The rest of the tissues in the model were considered to be homogeneous with
the same background conductivity of 1.79 S/m. Difference imaging with reference
to the homogeneous case was applied for every minute of the treatment: Each mea-
sured (assumed) potential Vi was evaluated against the potential in the homoge-
neous model, Vhom for every minute i .

∆σi =DifferenceImaging (Vi ,Vhom) (4.1)

The difference in conductivity was then added to the homogeneous image to
produce the reconstructed one,

σi = σhom +∆σi (4.2)

The relevant hyperparameter was set at 10−10 and Noser regularization scheme was
used for each of the total 10 reconstructions. To calculate the values of conductivity
from the reconstructed image the average of each cell that belongs entirely to the
target area was taken.
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Figure 4.11: Average expected and reconstructed conductivity on tar-
get area.
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Discussion

This study demonstrated the feasibility to perform real-time imaging of the applica-
tion area during microwave ablation using electrical impedance tomography. There
are a number of ways, some of which are presented in this chapter, in which the re-
sults of an in silico imaging analysis can be improved – including real voltage mea-
surements from actual tomography. Nevertheless, the results of this work indicate
that it is possible to achieve quality imaging and reliable real-time evaluation of the
target area during microwave ablation.

5.1 On the forward problem

For the calculation of the voltages on the electrodes around the model EIDORS’
forward solver was used primarily. Its results were validated against an own im-
plementation of the finite element method for the static electrical field that was
developed in C++ for this study. Two options for the geometry of the cells were
offered by EIDORS: Linear first order and quadratic second order elements.
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Since second order tetrahedra consist of 10 degrees of freedom compared to 4
for first order elements, they demand a considerable amount of computational re-
sources. Even more, reconstruction algorithms in EIDORS currently do not sup-
port second order elements. As such, the additional 6 nodes per element in a second
order mesh only improve the solution in the first 4, i.e the solution at the vertices
of the tetrahedra. One has the possibility to use second order mesh for the forward
problem to achieve better solution, but the second order elements do not take part
in the reconstruction.

We compared the reconstructed image when the forward solution was obtained
with second order to the one obtained with first order elements. A comparison
analysis is not presented here but since our primary aim was to overcome the ill-
conditioning of the inverse problem, we decided that higher order elements for the
forward problem were unnecessary. This is even more evident when considering
that the resulting solution from the FEM can be substantially improved by using a
finer (first order) mesh in the first place.

5.2 On the model design

The human model that was used is extremely realistic, since it was obtained at 1mm
resolution with magnetic resonance imaging. Clinical application parameters for
the application of the MWA were taken into consideration when designing the tar-
get area and the functionality of the electrodes.

The target was designed as a spherical area of radius 5mm, bearing in mind that
during microwave ablation the surrounding area of 20mm is directly affected and
ablated at temperatures over 100 °C. The values for the electrical conductivity, as
obtained for the bovine liver should describe accurately the whole area of 20mm
around the antenna during the ablation at 2.45 GHz.

The 16 electrodes were assumed to contact only one point of the mesh each.
For a future improvement of the resulting reconstructed image, one could use two
zones (or even three) of surrounding electrodes at different heights to obtain a more
accurate result.

This algorithm described in section 4.2.1 for the attachment of the electrodes to
the model is robust against many model geometries (including primitives), however
the electrodes may not end up to be absolutely equidistant. Small variations at the
distances between them are apparent in the resulting figures. However, we assume
that small variations in the distances of the electrodes are inevitable anyway during
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an actual application of the tomography, and thus we opted not to optimize further
their positions.
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Figure 5.1: Average expected and reconstructed conductivity on
healthy area around the target area.

5.3 On the reconstructed image

We used EIDORS’ difference imaging algorithms for the image reconstruction. Dif-
ference imaging assumes a homogeneous distribution of the potential as a reference
solution. As observed in the values obtained for the conductivity at figure 4.11, the
error from the expected value increases for reconstructed images that differ consid-
erably from the homogeneous reference background. The more inhomogeneous
the reconstructed image is, the more its error from the expected value increases.

That is not suprising, since the assumption for the Gauss-Newton algorithm is
that the difference in conductivity ∆σ is a relatively small number. After the ap-
plication of microwave ablation for 10 minutes the resulting reconstructed image is
shown in figure 5.2.

It is important to evaluate how focused the treatment is and how much dam-
age potentially causes to healthy tissues. The optimal result would be to ablate as
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(a)

(b)

(c)

Figure 5.2: Reconstruction of target area at the end of the treatment
compared to the expected.
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much as possible –if not all– of the cancerous area, and as little as possible of the
surrounding cells. To evaluate the spatial accuracy of the microwave ablation to the
area around the tumor we measured the average at a spherical area of radius 20mm
around the target area without the target area. As it can be seen in figure 5.1 healthy
tissue is affected but to a much lesser extent. Average conductivity drops at around
1.45 S/m, whereas in the target it dropped at exaclty 1.32 S/m.

Figure 5.3: 3D slice of the reconstructed image. Hyperparameter:
1e-4.

Figure 5.4: 3D slice of the reconstructed image. Hyperparameter:
1e-10.

It is worth pointing out the effect that the particular geometry chosen has on
the final outcome. A relatively small section of the human body was isolated, so
that contains the entire liver. By assessing the reconstructed image in figure 5.4, it
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(a) x-normal (b) x-normal

(c) z-normal (d) z-normal

(e) y-normal (f) y-normal

Figure 5.5: Slices of the reconstructed image for each axis. Images
on the left column were generated with hyperparameter value 1e-4,
whereas images on the right column were generated with hyperpa-

rameter 1e-10.
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is apparent the axial vertical effect the height of 115mm has. Such an outcome it is
expected, since the height of the model is relatively small compared to its horizontal
width (190mm for the x-axis and 286mm for the y-axis). This effect confirms the
correctness of the reconstruction algorithms that were used and makes future work
highly promising.
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